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Figure 1: Sketches are a high-level representation that does not always convey enough information to distinguish between different categories
of objects. Ambiguous sketches - as the ones above - pose a challenge in evaluating computer methods for sketch recognition.

Abstract

We introduce an approach for sketch classification based on Fisher
vectors that significantly outperforms existing techniques. For the
TU-Berlin sketch benchmark [Eitz et al. 2012a], our recognition
rate is close to human performance on the same task. Motivated by
these results, we propose a different benchmark for the evaluation
of sketch classification algorithms. Our key idea is that the relevant
aspect when recognizing a sketch is not the intention of the person
who made the drawing, but the information that was effectively ex-
pressed. We modify the original benchmark to capture this concept
more precisely and, as such, to provide a more adequate tool for the
evaluation of sketch classification techniques. Finally, we perform
a classification-driven analysis which is able to recover semantic as-
pects of the individual sketches, such as the quality of the drawing
and the importance of each part of the sketch for the recognition.
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1 Introduction

Sketching is a natural way of expressing some types of ideas. It
conveys information that can be really hard to explain using text,
and at the same time it does not require a tremendous amount of
effort. It is also a suitable communication tool for children or illit-
erate people. As human-computer interaction moves towards easier
and more high level languages, sketching will certainly continue to
have its place in all sorts of applications, including image [Eitz et al.
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2011] and shape [Eitz et al. 2012b] retrieval, shape modeling [Olsen
et al. 2009] [Schmidt et al. 2006] and character animation [Davis
et al. 2003].

In a different perspective, sketching is possibly the most high-level
and sparse type of visual media that can be understood by humans,
which makes it an interesting object of study in computer vision.
Why we can understand sketches so well and whether we can teach
computers to do the same are research questions still in need of an
answer.

We present a technique for sketch classification that performs sig-
nificantly better than the state-of-art. Using the TU-Berlin sketch
benchmark [Eitz et al. 2012a], we achieve a recognition rate of
68.9%, which is an absolute improvement of 13% over their results.
Also, with these results, we come close to the accuracy achieved by
humans, which is 73%. Unfortunately, it might be too soon to say
computers are performing comparably to humans in this task.

Before looking into how humans understand sketches, we need to
determine when it is possible for humans to understand sketches.
More specifically, when does a sketch contain enough information
to allow it to be unmistakably put into a specific category? As can
be seen in Figure 1, this is not always the case. We discuss the
specific reasons for the low performance achieved by humans in
the TU-Berlin benchmark, and modify it to make it less sensitive to
the types of problems we found.

Finally, we perform a data-driven analysis of sketches based on
the classification method. We get sound results when determining
which sketches are good/poor representatives of a class, performing
consistently better than [Eitz et al. 2012a]. Then, we analyze which
parts of the sketch are most important for recognition. These results
usually describe the most basic features of a sketch, and provide in-
tuition on how the computer understands the different categories.

The contributions of our work are:

• State-of-the-art results in sketch classification that are compa-
rable to human performance in an existing benchmark;

• A modified benchmark that is more suitable for the evaluation
of classification algorithms;

• A classification-driven analysis that can extract semantic in-
formation from sketches.

The rest of this paper is structured as follows. Section 2 reviews
existing work that is related to ours. In Section 3, we explain the
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application of Fisher vectors to sketches and discuss the results ob-
tained on the existing benchmark. An analysis of the benchmark
is performed in Section 4, and we introduce a new benchmark for
the evaluation of sketch classification algorithms in Section 5. Fi-
nally, we present a classification-driven strategy for the analysis of
sketches in Section 6. Section 7 concludes the paper.

2 Related Work

Sketch classification is closely connected to image classification.
We will first review the existing work in image classification that
is most related to ours, and then provide an overview of existing
methods that are specific for sketches.

2.1 Image Classification

The problem of image classification is defined as follows: Given a
number of classes and a set of images for each class (training set),
find the class labels for a disjoint set of images (testing set). The
first step in this process is deciding which image representation to
use. Once we have a reasonable way to describe the image, we can
decide which category the image belongs to by simply finding the
nearest neighbor in the training set, or by using a standard classi-
fier (Support Vector Machines [Hearst et al. 1998] are a popular
choice). We discuss here the different image representations com-
monly used.

Bag-of-visual-words. One of the most widely used techniques for
image classification is bag-of-visual-words [Sivic and Zisserman
2003] [Csurka et al. 2004]. It consists of calculating a dictionary
of visual words (that can be any type of descriptor of a patch, e.g.,
SIFT [Lowe 2004]) and representing the image using this dictio-
nary. More specifically, a number of representative SIFTs are se-
lected as the words of the dictionary - this is usually done by k-
means clustering. Then, we calculate the SIFTs of the image and
assign them to the nearest word. The final image representation is
given by the histogram of the visual words.

Spatial pyramids. One of the major drawbacks with bag-of-visual-
words is the lack of spatial information. Spatial pyramids [Lazeb-
nik et al. 2006] were introduced to deal with this problem. The
method consists of repeatedly subdividing the image and applying
bag-of-words to each subdivision. At each level, a histogram of the
visual words is calculated. The concatenation of these histograms,
weighted by the size of the pyramid cells, form the image represen-
tation.

Fisher vectors. While bag-of-words are very powerful, it is un-
clear why this should be an optimal representation of the image.
Alternatively, an approach based on Fisher Kernels [Jaakkola and
Haussler 1998] has been proposed [Perronnin et al. 2010] [Sánchez
et al. 2013]. It consists of characterizing a sample from a distribu-
tion by its deviation from the generative model. More specifically
in the field of image classification, we define a Gaussian Mixture
Model as the generative model for the SIFTs, and then represent
each image by the deviation of its patches from this model.

2.2 Sketch Classification

Research in sketching goes back to the beginning of Computer
Graphics as a field, with the development of SketchPad [Sutherland
1964]. Since then, much work has been devoted to the understand-
ing of sketches, first constrained to specific low-level types, such as
arcs and circles, and more recently extended to general objects.

Domain specific sketch recognition. One of the earliest works on
sketch recognition is due to [Rubine 1991]. They achieved good ac-

curacy when recognizing some types of symbols, like digits and let-
ters. [Sezgin 2001] tries to represent sketches in a more formal way
by fitting geometry to them, allowing beautification algorithms to
be applied. Later, [Hammond and Davis 2007] discussed the prob-
lem that sketch recognition worked only in specific domains. They
proposed a language to describe these domains and a technique to
automatically generate the corresponding specific sketch recogni-
tion algorithm. [LaViola and Zeleznik 2004] developed a system to
allow recognition of sketched math expressions, and [Ouyang and
Davis 2011] introduced the same sort of application in the domain
of chemistry diagrams. Recently, [Donmez and Singh 2012] intro-
duced a gesture recognition framework that allows learning repeti-
tive patterns by example, allowing automatic synthesis of this type
of sketches.

General sketch classification using Bag of Visual Words. Based
on the successful bag-of-visual-words framework, [Eitz et al.
2012a] introduced a sketch classification method for general ob-
jects: they created a benchmark of 250 categories, covering many
objects we encounter every day. Technically, their sketch classi-
fication does not differ much from the respective image classifi-
cation technique - using bag-of-visual-words and Support Vector
Machines. Their patch descriptors, however, are a modification
of SIFT specially tailored for sketches - taking into account that
sketches do not have smooth gradients and are also much sparser
than images. This is the work most closely related to ours.

General sketch classification using Structure-based Descrip-
tors. Recently, [Cao et al. 2013] introduced a symmetry-aware flip-
invariant descriptor for sketches. Drawings often appear flipped,
and this kind of descriptor could improve the classification results,
specially in settings where not much training data is available. For
the classification task, the reported recognition rate is close to the
one reported by [Eitz et al. 2012a], while using only 24 categories,
instead of 250. Following a similar line, [Li et al. 2013] represented
the sketch by a star-graph and performed a specific matching strat-
egy for this structure. While they achieve 61.5% accuracy, their 4-
cross-fold validation results in bigger training sets than [Eitz et al.
2012a], such that the comparison is not fair.

3 Sketch Classification with Fisher Vectors

In this Section, we describe the application of Fisher Vectors to
the sketch classification problem - the settings we used and some
small modifications that were essential for achieving good results
on the TU-Berlin benchmark. In our implementation, we used the
library VLFeat [Vedaldi and Fulkerson 2008], both for Fisher Vec-
tors, SIFT, and for the Support Vector Machines.

We start from the rasterized version of the sketches (resized to
480×480 pixels) and describe them by extracting the Fisher Vector
representation. We use a Gaussian Mixture Model with 256 Gaus-
sians as the generative model of the patch descriptors. To estimate
the parameters of this GMM, we obtain 25600 sample descriptors
by applying dense SIFT in the images of the training set and reduce
them from 128 to 80 dimensions using PCA. Finally, we use Ex-
pectation Maximization [Sánchez et al. 2013] to estimate the mean,
variance and weight of each Gaussian. With the GMM in place, we
can now encode each image in the training set using the deviation
from the distribution (using Fisher Vectors).

The final step is to train the Support Vector Machines. For every
class, we train a SVM where the positive set are the sketches of
the class, and the negative set are all other sketches (one vs. rest).
This gives us a score for the object, denoting the confidence that the
object belongs to the class. To extend this to multi-class categoriza-
tion, we set the category of the object as the one which obtained the
highest score.



Differently from what was reported by [Eitz et al. 2012a], our re-
sults were improved by the usage of spatial pyramids. For all tests
we use only two levels: 1× 1 and 2× 2 grids.

3.1 Larger SIFT Patches

Rasterized sketches are a very specific subset of the image category.
A main difference is that they are extremely sparse - a small patch
in this kind of drawing will usually be composed by at most one line
segment, which is not very informative. To account for that fact, we
increased the size of our SIFT bins from 4× 4 pixels, which would
be the common size for image classification, to 8 × 8, 16 × 16,
and 24 × 24 pixels. Note that SIFT descriptors use a 4 × 4 grid,
so the actual size of the patches is 32× 32, 64× 64, and 96× 96,
respectively.

Our results show that having bigger SIFT patches improves the clas-
sification rate (see Figure 2). Changing the parameters of SIFTs, in-
stead of performing modifications on the structure of the descriptor,
has the advantage of being compatible with the standard Computer
Vision framework. Using the specially tailored features from [Eitz
et al. 2012a] could improve our results even further.

3.2 Classification Results

We now discuss the results we obtained applying the technique de-
scribed above to the TU-Berlin sketch benchmark.

Benchmark. The benchmark consists of 250 object categories,
with 80 sketches each. The category of each sketch was defined
by the person drawing it. After the sketch creation, there was a
phase where humans tried to recognize the sketches - achieving an
accuracy of 73%.

Results. The test settings were chosen to be consistent with the
setup from [Eitz et al. 2012a]. We test 3 different patch sizes, with
and without using spatial pyramids, and 10 subset sizes (the subset
is the part of the dataset that will be used in each test). We divide the
subset in 3 parts: 2 to be used as the training set and 1 as the testing
set. The results reported are the average accuracy of three runs, one
with each part being used as the testing set. Figure 2 shows the
results we obtained for patch sizes of 16 × 16 and 24 × 24. We
omitted the inferior results (8× 8) for better clarity.

The results demonstrate that Fisher vectors significantly improve
over the state-of-art. Also, with enough training samples, accuracy
is now close to human performance. Our usage of bigger SIFT
patches is also responsible for an important amount of the improve-
ment (the best results for FV with 8× 8 patches was 63.1%, on the
subset with 80 images). The usage of spatial pyramids also gave us
better accuracy - differently from what was reported by [Eitz et al.
2012a]. We suppose their features are big enough to already en-
code most of the spatial information. Finally, note that they show
in their paper the difference between soft and hard assignment. In
our experiments, we only used soft assignment.

4 Benchmark Analysis

In Section 3, we demonstrate that our approach achieves results that
are close to human performance when classifying sketches. These
results are somewhat counter-intuitive, since object recognition is
usually a very hard task for computers and one where humans per-
form amazingly well.

As discussed in [Hoiem et al. 2012], average accuracy over thou-
sands of images does not always reveal the true difference between
two algorithms, e.g, when and why a technique outperforms the
other. In their paper, they analyze the performance of two methods
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Figure 2: Classification results on the benchmark from [Eitz et al.
2012a] (accuracy as a function of subset size). (FV) denotes Fisher
Vector, (SP) denotes Spatial Pyramid. The results from [Eitz et al.
2012a] are taken from their paper, for soft and hard assignment
using SVMs.

on the PASCAL VOC 2007 dataset [Everingham et al. 2010] by
examining the effects of different obstacles (occlusion, confusion
with similar objects, localization error, ...) on the classification re-
sults. In this Section, we use the same sort of ideas to understand
the real differences between computer and human performance, and
propose a benchmark that is more in accordance with the sketch
classification task.

4.1 Analyzing human misclassifications

To understand why computers perform almost as well as humans,
we need to understand when humans make mistakes. By analyzing
the results of [Eitz et al. 2012a], we identify three sources of prob-
lems: categories that are too similar or contain each other, poor
sketches and, finally, simply poor recognition.

Similar categories. Almost 40% of human errors can be explained
by confusion between 0.3% of the pairs of categories. For example,
the category chair is confused with the category armchair 39% of
the time. One reason for this problem is that human sketches are
high level representations and often do not contain enough detail to
distinguish between very similar categories (see Figure 3). In some
cases, the categories chosen by [Eitz et al. 2012a] also contain each
other or strongly overlap, like bear and teddy bear, or sea gull
and flying bird. This shows that a high percentage of the mistakes
made by humans are semantically meaningful and cannot be seen
as real misinterpretations of the sketch.

Poor sketches. A different source of errors are sketches that do not
really represent their category. This type of error is much harder to
quantify, because we cannot distinguish between a good sketch that
was poorly classified, and a bad sketch. Figure 4 shows some ex-
amples of sketches that are, in our judgement, not a good represen-
tation of their categories. Penalizing human/computer performance
using this kind of sketch is misleading.

Poor recognition. Finally, there are what we consider to be the
real mistakes made by humans. Again, it is challenging to identify
them, because they are intrinsically confused with the problem of
having unrecognizable sketches.



Figure 3: Some categories of the benchmark proposed by [Eitz
et al. 2012a] are very hard, if not impossible, to distinguish through
the coarse representation given by sketches. The figure shows
examples of images from different classes. (red) Categories car
(sedan) and race-car. (green) Categories megaphone and loud-
speaker. (blue) Categories face and head. (yellow) Categories cup
and tea cup.
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Figure 4: Some sketches are drawn so poorly that it is not possi-
ble to recognize the intention of the author. Penalizing recognition
performance using these sketches leads to unintuitive results.

5 Improved Benchmark

From the analysis of human results, we identify two problems: sim-
ilar categories, that are hard to distinguish from each other using
sketches, and poor sketches, whose category cannot be identified.
Based on these issues, we propose a different way to think about
this problem, shifting the question from “how do humans sketch
objects?” to “how do humans understand sketches?”. The key idea
is that a sketch is only adequate if it expresses what it was meant to
express, to the extent that it can be understood by other humans.

Ideally, one would create a benchmark of sketches that were consis-
tently recognized by humans as belonging to one class. This would
solve the two problems described earlier, because both sketches
that are not recognizable and sketches that belong to undistinguish-
able classes are unlikely to be classified consistently. As discussed
in [Eitz et al. 2012a], however, the amount of work required for
creating such a benchmark is huge. Instead, we use only the cor-
rectly classified sketches from this existing benchmark. By having
at least two humans who agree about the class of the sketch (the one

drawing it, and the one recognizing it) we move considerably in the
direction of the kind of benchmark we would like to have, without
needing additional annotation effort.

Procedure. We create our benchmark by first excluding all
sketches that were misclassified by humans. From the remaining
set, we select only those classes that have at least 56 samples, which
is 70% of the original amount. This results in 160 classes of ob-
jects, each one with at least 56 objects. For categories where there
were more than 56 correctly classified sketches, we did not remove
the exceeding ones. We randomly select a subset when perform-
ing experiments to avoid bias towards bigger classes. Note that the
procedure we use to select which classes and sketches belong to the
new benchmark is systematic and totally based on the results ob-
tained by humans. The benchmark is by no means biased towards
the classification method we used.

5.1 Classification Results in the new Benchmark

We applied the exact same algorithm and parameters as explained
in Section 3 to the modified benchmark. Since not all categories
have more than 56 samples, we perform the experiments up to this
dataset size. While the accuracy is higher than the results reported
on the original benchmark, there is more room for improvement -
here, human performance defines the ground truth, i.e., 100%. Note
that in this case the problem of a better technique getting worse
results because of poor human drawing is attenuated, so that im-
provements in technique should also lead to better scores. Figure 5
shows the average precision for our Fisher Vector representation
using different patch sizes.
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Figure 5: Results obtained on the new benchmark. We expect that
future improvement in techniques will translate more naturally into
better performance.

5.2 Discussion

From the 0.3% pairs of categories that were responsible for 40% of
human misclassifications, this procedure was able to remove 85%
(only 16 pairs were left, from an initial 107). Note that the policy
we used for removing the sketches from the benchmark was not spe-
cially tailored for removing confusing pairs - although, of course,
confusing pairs of categories tend to have less correctly classified
sketches.

Analyzing which confusing pairs of categories were kept was also



very interesting - see Figure 6. They depict, in all cases, pairs of
categories that do have some similarities, but still allow users to
recognize a majority of the sketches. As such, we think it is a good
thing that these classes are still part of the benchmark.

We believe the confusing classes problem was practically solved by
our procedure. Note that this step is essential for every technique
trying to understand sketches and is not a trivial one (it would be
hard to justify that people can draw owls distinguishably, but not
seagulls, in a non-data-driven manner).

The poor sketches problem was not totally solved by our proce-
dure, since humans can sometimes correctly guess the category of
low quality drawings. Having more human evaluations would help
solve this problem. We show next that human answers are more
consistent in the modified benchmark.

bathtub / bowl fan / windmill tooth / mouth

sheep / cow butterfly / bee socks / shoe

spider / ant axe / hammer

tree / mushroom saxophone / pipe chair / sitting
person

with stem
flower

plant
potted /

light bulb / tablelamp

guitar / violin

trumpet / saxophone

rifle / revolver

Figure 6: Some pairs of categories that are classified as confus-
ing were kept in the new benchmark. They express classes that are
similar, but still distinct enough that most sketches will be correctly
recognized.

Our benchmark creation relies on the assumption that the agree-
ment of two humans, together with the removal of some confusing
categories, will lead to a dataset that can be more consistently rec-
ognized by humans. To confirm this hypothesis, we performed ad-
ditional evaluation of 1000 sketches - 500 from the old dataset and
500 from the new one. We asked 10 users, which evaluated approx-
imately 100 sketches each. Users achieved 93% of accuracy in the
new dataset, against 75.8% in the old one. This improvement is sig-
nificantly bigger than just the effect of a smaller number of classes.
This demonstrates that our dataset already makes a big step towards
what we understand to be the ideal benchmark. We will make the
trimmed TU-Berlin benchmark available for future research.

As an additional note, useful for future annotation, many users com-
plained about the way the hierarchy of categories was chosen and
would have preferred to see all categories at once - we used the
same structure as [Eitz et al. 2012a].

6 Classification-driven analysis

In this Section, we use classification results to investigate how our
method understands sketches. Semantic understanding of sketches
could improve tasks like recognition, beautification, animation and
automatic synthesis. Also, because this type of representation is
extremely sparse, it could give insight on which are the most basic
features that define a category of objects - something that could be
useful even in other types of visual classification.

6.1 Representative sketches

The first analysis we performed is whether we can use the data we
have to assess the quality of a sketch, i.e., how well it represents
the category it belongs to. We define as most representative sketch
the one that got the highest classification score for that class. In
Figure 7, we compare our results with the representative sketches
from [Eitz et al. 2012a]. For a fair comparison, we use the old
dataset introduced by them, and we compare only to classes for
which they have a single representative sketch. We believe our ap-
proach achieves superior results.

Also meaningful are the sketches that get the worst classification
score for the class they are meant to represent. They are always poor
sketches, or sketches that differ too much from the usual sketch
in the category. In Figure 8, we show the sketches with lowest
classification scores for some categories.

The quality of a sketch is very difficult to evaluate in a quantified
manner. We provide the whole set of iconic sketches in the supple-
mentary material.

6.2 Stroke importance

A different question when analyzing sketches is the importance of
each individual stroke made by the user. The representation using
Fisher Vectors does not directly translate into scores for the differ-
ent parts of the image. Instead, we used the following method: for
each stroke, remove it from the image and see how it affects the
classification score. Our results show that this technique can pro-
vide insight of which strokes are important for the sketch - as can
be seen in Figure 9.

Figure 9: Visualization of stroke importance in sketches. Strokes
that contribute positively to the recognition are shown in green,
while strokes that our approach perceives as confusing are shown
in red. The saturation shows the magnitude, i.e., black strokes have
small or no influence on the ability to recognize the sketch.

Again, it is very hard to evaluate objectively whether a stroke was
really important for the sketch. To demonstrate that we perform
consistently across the whole dataset, we provide all results in the
supplementary material. The results here are constrained to 56
sketches per class (while our dataset has bigger classes) because
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Figure 7: Classification scores are a good measure of sketch quality. (top) Our best score. (bottom) Eitz et al.
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Figure 8: Low classification scores identify very poorly drawn sketches or sketches that differ very much from the rest of the category.

those were the 56 randomly chosen sketches used in the classifica-
tion task.

For some cases where stroke importance was not intuitive, we in-
vestigated the reasons behind the results further. An interesting ob-
servation is that SVMs are discriminative models, which means that
the negative set has an influence on the results, as well as the posi-
tive [Torralba and Efros 2011]. This means that increasing the clas-
sification score for one class may be more related to decreasing the
score for other classes.

In Figure 10, we can see some examples of sketches with unex-
pected stroke importances that can be better understood by looking
into the negative set. The airplane, for example, was originally clas-
sified as a submarine, so that making it look less like a submarine
plays a main role in making its confidence as an airplane go up.

(importance) (importance)

(importance)(importance)

Figure 10: The importance our method assigns to some strokes
is unintuitive if we do not observe the negative set. (top-left) air-
plane, originally classified as submarine. (top-right) pineapple,
originally classified as fish. (bottom-left) banana, originally clas-
sified as bathtub. (bottom-right) sea turtle, originally classified as
pizza.

It is important to make the disclaimer that this analysis is not exact
- the removal of strokes also has effects on other categories, and it
is not always easy to infer why. This analysis does suggest some
further directions for exploration though, which we discuss next.

6.2.1 Pairwise SVMs

Since classification results are influenced by both the positive and
the negative set, we performed some experiments using only one

class as the negative set. We would expect that the stroke impor-
tance, according to these classification scores, would highlight the
strokes that differentiate most between two classes. The pairwise
SVMs we trained were the confusing categories from Figure 6.

The results we got were often meaningful - see Figure 11. Note that,
differently from the previous experiments, green denotes features
that are distinctive for this class, while red shows features that are
distinctive for the other one.

MOUTH                   TOOTHBEE

CHAIR                  PERSON SITTING FLOWER WITH STEM       POTTED PLANT

BUTTERFLY

Figure 11: The stroke importance according to pairwise SVMs
highlights parts of the object that make it distinct from the negative
set.

6.2.2 Pruned Negative Set

The final experiment we made was to prune the dataset to avoid
having similar classes in the negative set. The reasoning behind
this is that the legs of a cow, for example, are an important part
of the sketch, even if they look more like horse legs. While there
was improvement in some sketches, it was not significant for the
majority of cases. We believe this happens because sketches are
such a coarse representation that the same stroke can be a leg of a
cow or a part of a chair - making it hard to predict which categories
would have overlapping subsets.



6.3 Most Recognizable Subset of Strokes

Going further into the analysis of stroke importance, one could try
to obtain the subset of the sketch that would be mostly recognizable
for the computer. Finding the set of strokes that would provide the
best classification results, however, is a combinatorial problem.

The strategy we used was a greedy approach that iteratively re-
moves the most confusing stroke. For each step, we compute the
scores for the image without each of its strokes, and get the max-
imum for the next step. We stop if there is no stroke removal that
would increase the classification score anymore. This approach is
of course not robust against local minima. We implemented an al-
ternative scheme using genetic algorithms, but it only rarely out-
performed the greedy version. In Figure 12, we show some results
achieved with our method.

The binary nature of optimal subsets (kept or removed) gives a less
informative visualization than the one given by stroke importance.
Since our optimal subset calculation is a straightforward application
of the stroke importance, we preferred to add the stroke importance
results to the supplementary material.

6.3.1 Discussion

There exists a body of research dedicated to line drawing simplifica-
tion [Barla et al. 2005] [Shesh and Chen 2008]. These methods are,
however, mostly dedicated to a different type of drawing. For exam-
ple, they perform simplification by removing clutter. Our sketches
are very simple already and do not contain that many overlapping
strokes to be removed.

The goal we are trying to achieve here is not simplification by itself.
By finding the optimal subset of the sketch, we intend to isolate the
features that differentiate a category from the others. This is an es-
sential step towards automatic semantic understanding of sketches.

7 Conclusions and Future Work

We introduced an approach for sketch classification based on Fisher
Vectors that performs significantly better than other techniques,
achieving results close to human outcomes. Even if the technique is
not novel, the application of Fisher Vectors to sketches is new, and
the results we achieved are clearly the new state-of-the-art in sketch
classification.

Our modified benchmark is an essential improvement in the eval-
uation of sketching. The previous benchmark is saturated and per-
forming a fair comparison between techniques in the presence of
the artifacts we discussed can be difficult. Our view that sketch
recognition systems should be evaluated by their ability to mimic
human performance in this task, by itself, is a step towards better
benchmarks and techniques.

Finally, we introduce a data-driven approach for the understanding
of sketches. Our results demonstrate that classification scores are
a good criterion for measuring the quality of a sketch. We also
achieved good results when determining the contribution of parts
of the sketch to the overall recognizability.

We believe our work opens many possibilities for further explo-
ration. The stroke importance results are still not perfect, specially
for classes with many strokes, and one drawback is the greedy na-
ture of our method. Pre-processing the sketch to identify which
strokes belong together could improve this analysis.

Following on our stroke importance analysis, it would be interesting
to investigate which were the most important strokes for a category

as a whole, and to formalize which kind of geometric shapes de-
fine a class. A more geometrical/topological description of sketches
could also improve robustness, in the sense of being less disturbed
by small differences in strokes.
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Figure 12: Most recognizable subset of the sketch. Determining which features are important for a category is crucial for semantic
understanding of sketches. (left) Original. (right) Our method.


